Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 142(5): 672-685, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28665486

RESUMO

Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Sulfato de Desidroepiandrosterona/metabolismo , Pregnenolona/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Masculino , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Wistar
2.
Methods Mol Biol ; 814: 415-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22144323

RESUMO

In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2 weeks, using pre-frozen astrocytes, from isolation of RBECs to generation of high-resistance/low-permeability RBEC monolayers.


Assuntos
Astrócitos/citologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Animais , Impedância Elétrica , Ratos , Junções Íntimas/fisiologia
3.
Neurobiol Dis ; 37(1): 13-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19664713

RESUMO

Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.


Assuntos
Barreira Hematoencefálica/anatomia & histologia , Barreira Hematoencefálica/fisiologia , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/patologia , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/fisiologia , Permeabilidade Capilar/fisiologia , Humanos , Modelos Neurológicos , Junções Íntimas/fisiologia
4.
Exp Eye Res ; 83(1): 24-30, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16530756

RESUMO

P-Glycoprotein (P-gp), an active efflux transporter encoded by the MDR1 gene, has recently been identified in the human and pig retinal pigment epithelium (RPE) in situ. Efflux pumps such as P-gp are major barriers to drug delivery in several tissues. We wished to establish whether human RPE cell lines express P-gp under the culture conditions recommended for each cell line so as to determine their suitability as in vitro models for predicting drug transport across the outer blood-retinal barrier. Three human RPE cell lines, ARPE19, D407 and h1RPE were investigated. Reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out to determine the expression of MDR1 mRNA. Immunocytochemistry using the P-gp-specific antibody C219 was undertaken to investigate the presence of P-gp protein in each cell type. Uptake of rhodamine 123, a P-gp substrate, in the presence or absence of pre-treatment with a P-gp inhibitor, verapamil, was measured in each cell line to determine functional expression of P-gp. For all experiments, MDCK cells stably transfected with the human MDR1 gene (MDCK-MDR1) were used as a positive control. ARPE19 cells were consistently negative for P-gp as assessed by RT-PCR and immunocytochemistry. By contrast, RT-PCR of D407 and h1RPE samples yielded weak bands corresponding to MDR1; P-gp protein expression, as demonstrated by C219 immunoreactivity, was also present. Rhodamine uptake after treatment with verapamil was significantly greater in D407 and MDCK-MDR1, indicating functional expression of P-gp in these two cell lines. No evidence of functional P-gp was found in ARPE19 and h1RPE. In conclusion, D407 and h1RPE cells express P-gp, though functional activity was demonstrable only in D407 cells. ARPE19 cells do not express P-gp. Of these human RPE cells lines D407 could be considered as a suitable model for in vitro drug transport studies, particularly those involving P-gp substrates, without modification of their usual culture conditions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Proteínas do Olho/análise , Epitélio Pigmentado Ocular/química , Transporte Biológico/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Citosol/metabolismo , Genes MDR/genética , Humanos , Imuno-Histoquímica/métodos , Epitélio Pigmentado Ocular/efeitos dos fármacos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rodaminas/farmacocinética , Verapamil/farmacologia
5.
Brain Res ; 1012(1-2): 185-6, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15158176

RESUMO

Following a recent claim, based on glial acidic fibrillary protein (GFAP) expression, that brain-derived astrocytes in culture are in fact endothelial cells, we immuno-labelled primary cultures of rat brain astrocytes and endothelium with various GFAP antisera. Both cell types stained positively with a polyclonal antibody, although monoclonal antiserum labelled only astrocytes. We conclude that staining of endothelial cells with the polyclonal GFAP antiserum is due to cross reactivity with another protein.


Assuntos
Química Encefálica , Endotélio Vascular/química , Proteína Glial Fibrilar Ácida/metabolismo , Soros Imunes/metabolismo , Animais , Astrócitos/química , Células Cultivadas , Endotélio Vascular/citologia , Proteína Glial Fibrilar Ácida/imunologia , Imuno-Histoquímica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...